

Dissociative research

- Samples are collected and stored for analysis at a "later" time
- "Later" can be months or years after sample collection
 - Of little direct benefit to the patient
 - Although may influence the community of patients
 - True of many analyses

Real time analysis

- Existing, familiar applications
- DESI
- The iknife
 - GI surgery
 - Cancer margins
 - Pathology
 - Bacterial masses
- Gases!
- CARS

Real-time analysis

- We see the real-time use of MS when we go through security checks at the airport
 - Checks for ion signatures of explosives
- Other devices are used to check for specific volatiles in the breath

The Challenge for Mass Spec

How to get the mammoth into the gas phase for analysis?

Droplet principle of electrospray

Droplet spray

- Sneeze
- Lung motion
- Surgical knife
- Other vapors

Desorption electrospray ionization (DESI)

Works by directing an electrical fine spray at a tissue target

The IDH story of brain and other tumors

- IDH1 (isocitrate dehydrogenase) is mutated in position 132 in a GWAS study of patients with glioblastomas
- IDH1 catalyzes the conversion of isocitrate to alphaketoglutarate (α KG) which is a two-step reaction
- Mutant IDH1 catalyzes the first step to 2-hydroxyglutarate (2HG), but not the second one to αKG
- 2HG is considered to be an oncometabolite

Link to video

 $\frac{http://www.smh.com.au/technology/sci-tech/doctors-praise-new-surgical-knife-that-diagnoses-as-it-cuts-20130718-2q72c.html}{}$

Fatty acid profiles of bacteria and other microorganisms

- Gas chromatography of fatty acid methyl esters distinguishes organisms
 - Used in Pathology Labs
- In 1990-93 my lab supported early engineering work on the International Space Station (subcontract from Boeing Corp.)
 - To determine the microorganisms that grow in a water treatment unit in microgravity

Phospholipid patterns are characteristic of cells and tissues

- Single items are not sufficient as biomarkers
- The classes of phospholipids and their fatty acid composition contain pattern discriminators
- In the absence of known classifiers, principal components analysis looks for groups of components that have the larger sources of variation
 - An individual sample's contributions to these groups are plotted in a 2D or 3D manner

Computer-driven, Rapid Evaporative Imaging MS (REIMS) for tissue sections

Examining tissue (slices) by REIMS High voltage supply Mounting points Alternative shapes and materials Suction tubing Sampling needle (electrode) Golf et al., Anal Chem 2015

Modes of data acquisition for REIMS Line Scans: Individual Pixels: Cutting Mode Pointing Mode

Golf et al., Anal Chem 2015

Gases produced in the GI tract

- H₂, CO₂ and CH₄ from carbohydrates
 - Firmicutes
 - From pyruvate and NAD(P)H/FADH2
 - H₂ used by sulfate-reducing bacteria (SRBs), methanogenic Archaea, and acetogens
- SRBs produce H₂S
- NO from nitrates

Methods for measuring gases

Technology	Operation mode	Target intestinal gas	Detection limit	Cross-sensitivity	Response time	Life time	Estimated cost
Spectrometry bas	ed ^a	·					
GC-MS	Off line	All gases	ppt to ppb	Low	~Several minutes	Long	>US\$300k
IMS	Real time	All gases	ppb	Low	<1 min	Long	>US\$100k
PTR-MS	Real time	All gases	ppt	Low	<1 min	Long	>US\$400k
SIFT-MS	Real time	All gases	ppb	Low	<1 min	Long	>US\$400k
LS	Real time	Most gases except H ₂	ppt to ppb	Low	<1 min	Long	<us\$50k< td=""></us\$50k<>
Sensor based ^b							
Electrochemical	Real time	H ₂ , H ₂ S, NO, and CO ₂	ppm	Medium	<30 s	Short	<us\$100< td=""></us\$100<>
Calorimetric	Real time	H ₂ , CH ₄ , and CO ₂	ppt	High	<10 s	Medium	<us\$100< td=""></us\$100<>
NDIR	Real time	CO ₂ , CH ₄ , and VOCs	ppm to ppt	Low	<20 s	Long	<us\$300< td=""></us\$300<>

Jian Zhen Ou et al., Trends Biotech, 2015

Device for measuring fecal gas production

Jian Zhen Ou et al., Trends Biotech, 2015

Use of Raman spectroscopy Real-time imaging of metabolites in skin

http://bernstein.harvard.edu/research/cars-why.htm

Sunny Xie, PhD - Harvard

The future of medicine and surgery

http://www1.imperial.ac.uk/phenomecentre/